1ST INTERNATIONAL CONFERENCE ON

Ph/Leukemias

Dr Franck E. NICOLINI

Hematology department

& INSERM U1052 CRCL

Centre Léon Bérard, Lyon, France



Disclosures Dr Franck E. NICOLINI

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Novartis	х		х		х	х	
Incyte Biosciences	х		х		х	х	
Terns Pharmaceuticals						х	
GSK					х		
Kumquat Sciences			х				
BMS						х	

Treatment-Free Remission has entered routine practice

2025 European LeukemiaNet (ELN) Recommendations for the Management of Chronic Myeloid Leukemia (CML)

Jane F Apperley^{1,2}, Dragana Milojkovic², Nicholas CP Cross³, Henrik Hjorth-Hansen⁴, Andreas Hochhaus⁵ Hagop Kantarjian⁶, Jeffrey Lipton⁷, Hemant Malhotra⁸, Dietger Niederwieser⁹, Jerald Radich¹⁰, Philippe Rousselot¹¹, Suzanne Saussele¹², Charles A Schiffer¹³, Richard Silver¹⁴, Simona Soverini¹⁵, Leif Stenke¹⁶, Anna Turkina¹⁷, Luis Felipe Casado Montero¹⁸, Fausto Castagnetti¹⁹, Francisco Cervantes²⁰, Jorge Cortes²¹, Richard Clark²², Michael Deininger²³, Timothy P Hughes²⁴, Jeroen Janssen²⁵, Qian Jiang²⁶, Dong-Wook Kim²⁷, Richard A Larson²⁸, Francois X Mahon²⁹, Michael Mauro³⁰, Jiri Mayer³¹, Franck E Nicolini³², Fabrizio Pane³³, Delphine Rea³⁴, Johan Richter³⁵, Gianantonio Rosti³⁶, Giuseppe Saglio³⁷, Rudiger Hehlmann³⁸

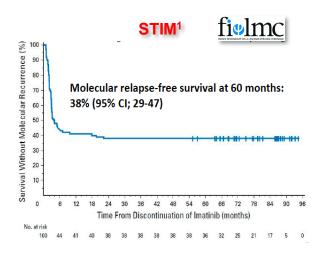
J. F. Apperley et al., Leukemia 2025

Treatment-Free Remission requirements

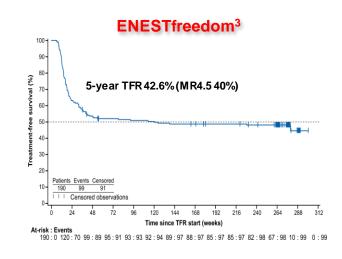
	kinase inhibitor discontinuation in CP CML				
Mandatory:	CML in first CP only (data are lacking outside this setting).				
	Motivated patient with structured communication.				
	Access to high quality molecular monitoring using the International Scale (IS) with rapid turn-around of results. In case of atypical transcripts in laboratories with a high standard of quantification.				
	Patient's agreement to more frequent monitoring after stopping treatment.				
Minimal (stop allowed):	First-line therapy, second-line if the reasons for switch were intolerance or resistance due to a mutation sensitive to another TK				
	Typical e13a2 or e14a2 BCR::ABL1 transcripts. In case of atypical transcripts in laboratories with a high standard of quantification.				
	Duration of TKI therapy >5 years (>4 years for 2G-TKI).				
	Duration of DMR (MR ⁴ or better) >2 years.				
Optimal (stop recommended for consideration):	Duration of TKI therapy >5 years.				
	Duration of DMR >3 years if MR ⁴ .				
	Duration of DMR >2 years if MR ^{4.5} .				
Procedures after stop:	Molecular monitoring 6 to 8 weekly for the first 6 months, 2 monthly for months 6–12, and every 3–6 months thereafter. Monitoring should increase in frequency if there is an increase in <i>BCR::ABL1</i> transcript levels.				
	Restart TKI-therapy if MMR is lost.				
	If TKI-therapy is restarted monitor 4-6 weekly until MMR is regained and then every 3 months until MR ⁴ is regained.				

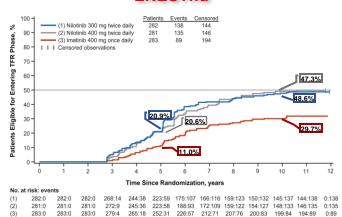
J. F. Apperley et al., Leukemia 2025

TFR: Remaining questions and challenges



- How can we increase the access/success to TFR?
- New tools to better select patients for TFR ?
- What are the very long term results of TFR?
- TFR = No blast crises ?
- Are 2nd attempts (or more) possible ?
- Are TFR attempts possible for rare BCR::ABL1 transcripts?


Obtain sustained DMR


How can we increase access to TFR (1)?

ENESTnd4

BFORE⁵

 2-year sustained MR4: bosutinib 32.5% vs imatinib 26.5% (OR 1.33 [95% CI, 0.92, 1.93])

¹Etienne et al. JCO 2017; 35: 298-305; ²Ross et al. Blood 2013; 122: 515-22; ³Radich et al. Leukemia 2021; 35: 1344-55; ⁴Kantarjian et al. Leukemia 2021; 35: 440-53; ⁵Brümmendorf TH, et al. Leukemia 2022: 36:1825–1833

Summary of Imatinib discontinuation data

Study	n ª	Median duration of treatment with TKI	Qualifying DMR	Median duration of DMR	Definition of molecular relapse	Percentage (%) of patients in TFR
STIM ^{24,25}	100	50 months	UMRD for ≥2 years	35 months	Loss of UMRD ^b	38 at 60 months
TWISTER ^{26,27}	40	70 months	UMRD for ≥2 years	36 months	Loss of UMRD ^c	45 at 60 months
STIM2 (REF. ²⁸)	218	79 months	UMRD for ≥2 years	39 months	Loss of UMRD ^b	50 at 24 months
DOMEST ²⁹	99	100 months	MR4.0 for ≥2 years	55 months	Loss of MR4.0	64 at 24 months
A-STIM ³⁰	80	79 months	UMRD for ≥2 years	41 months	Loss of UMRD ^b Loss of MMR	44 at 36 months 61 at 36 months
KID ³⁸	90	81 months	UMRD for ≥2 years	40 months	Loss of MMR	69 at 24 months
ISAV ³²	108	103 months	UMRD for ≥18 months	26 months	Loss of MMR	48 at 36 months
JALSG-STIM213 (REF. ³³)	68	97 months	MR4.0 for ≥2 years	67 months	Loss of MMR	65 at 36 months
EURO-SKI ^d (REF. ³⁴)	755	7.5 years	MR4.0 for ≥1 year	4.7 years	Loss of MMR	49 at 24 months
DESTINY ^d (REFS ^{35,36})	125	6.5 years	MR4.0 for ≥1 year	NR	Loss of MMR	72 at 36 months
	49	7.7 years	MMR for ≥1 year	5.5 years	Loss of MMR	36 at 36 months

Overall average is 54.2% at 24-60 months FU

Ross D, Hughes TP. Nature Reviews Clinical Oncology 2020

Summary of 2G-TKI discontinuation data

Study	n ^a	TKI and line of treatment	Median duration of treatment with TKI (total and second- generation TKI)	Qualifying DMR	Median duration of DMR	Definition of molecular relapse	Percentage (%) of patients in TFR
First-line DADI ³⁹	58	Dasatinib, first	40 months	MR4.0 for ≥1 years	23 months	Loss of MR4.0	55 at 12 months
DADI ^{40,41}	63	Dasatinib, second	82 months and 17 months	MR4.0 for ≥1 years	NR	Loss of MR4.0	44 at 36 months
D-STOP ⁴²	54	Dasatinib, first and second	92 months and NR	MR4.0 for ≥2 years	51 months	Loss of MR4.0	63 at 12 months
DASFREE ⁴³	84	Dasatinib, first and second	69 months and NR ^b	MR4.5 for ≥2 years	28 months	Loss of MMR	46 at 24 months
STOP 2G-TKI ⁴⁴	30 (each TKI)	Dasatinib and nilotinib, first and second	76 months and 39 months	UMRD for ≥2 years	29 months	Loss of MMR	54 at 48 months
STAT2 (REF. ⁴⁵)	78	Nilotinib, second	99 months and 25 months	MR4.5 for ≥2 years	51 months	Loss of MR4.5	63 at 36 months
ENESTop ⁴⁶	126	Nilotinib, second	88 months and 53 months	MR4.5 for ≥1 years	32 months	Loss of MR4.0	53 at 96 weeks
ENESTfreedom ^{47,48}	190	Nilotinib, first	44 months	MR4.5 for ≥1 year	30 months	Loss of MMR	49 at 96 weeks

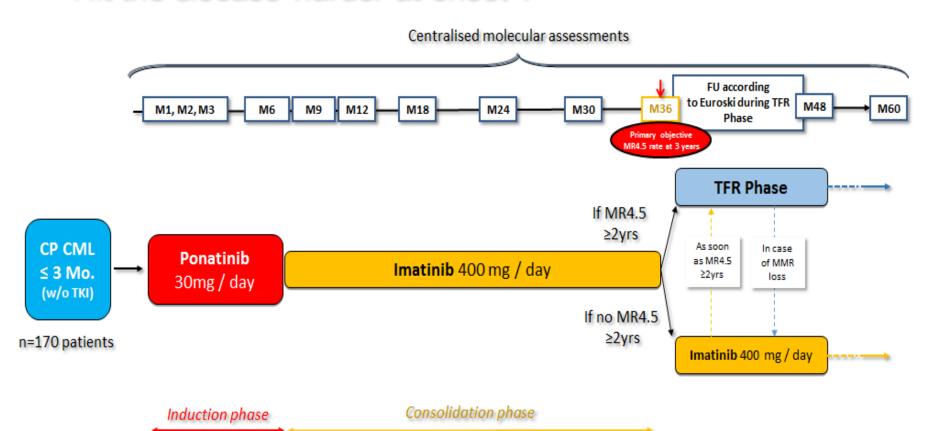
Ross D, Hughes TP. Nature Reviews Clinical Oncology 2020

Overall average is 53.4% at 12-48 months FU

Factors influencing recurrence after TKI cessation

Imatinib duration (≥5years vs <5 years)* Imatinib duration (>8years vs <8 years)** Sokal score (Low vs High)* MR4 duration (>5 years vs <5 years) PB NK cells lovele state

- Imatinib duration (≥5years vs <5 years)*


- BCR::ABL1 Major transcript type (higher in e13a2 vs e14a2)
- High regulatory T cells and CD86+ plasmacytoid dendritic cells

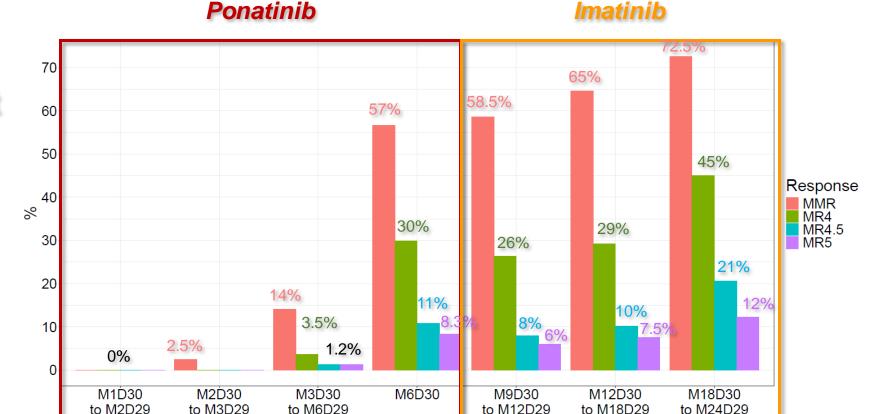
- **2G-TKI** Imatinib resistant/warning *vs* Imatinib-Intolerance *BCR::ABL1* levels M3 after cessation (>0.0032% vs ≤00032%)
 - Design of the clinical trial

*Mahon F-X., et al. Lancet Oncol, 2010 **Saussele S. et al. Lancet Oncol 2018 ***Rea D. et al. Haematologica 2017 Schutz C. et al. Leukemia 2018 Rea D. et al. Blood 2017 Ross D. Hughes T., Nature reviews Clin Oncol 2020

How can we increase access to TFR (2)?

Hit the disease harder at onset ?

EudraCT Number: 2018-001789-41 - Sponsor ID: ET18000120


Clinical Trial: NCT04070443

Nicolini FE et al., ASH 2024

How can we increase access to TFR (3)?

Proportion of molecular response « at » time points

Hit the disease harder at onset?

- CHR @ M1: 147/158 (93%)
- Median halving time: 13.5 (11.5-17.5) days
- EMR rate: 158/163 (97%)
- CCyR rate* @ M3: 115/169 (70.5%)

Nicolini FE et al., ASH 2024

All BCR:ABL1 assessments and molecular analyses were centralised in the Hematology lab, University hospital of Bordeaux

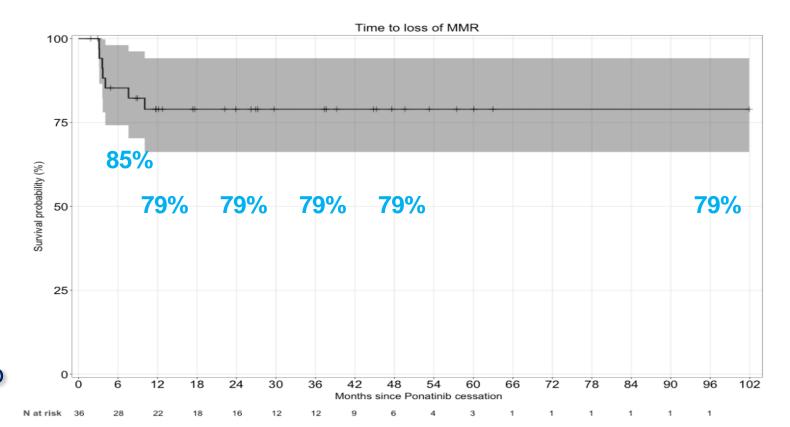
(Dr Stéphanie Dulucg, PharmD, PhD)

Bologna, Royal Hotel Carlton

September 29-30, 2025

How can we increase the access to TFR (4)?

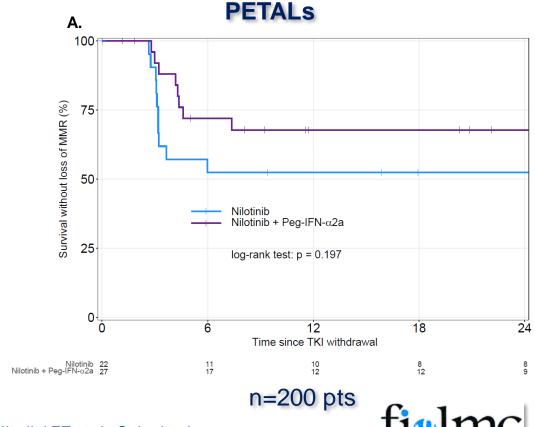
Hit the disease harder at later stages?



Pona

The median follow-up after Ponatinib cessation is 20 (8-41) months.

n=16 pts


Time to MMR loss.

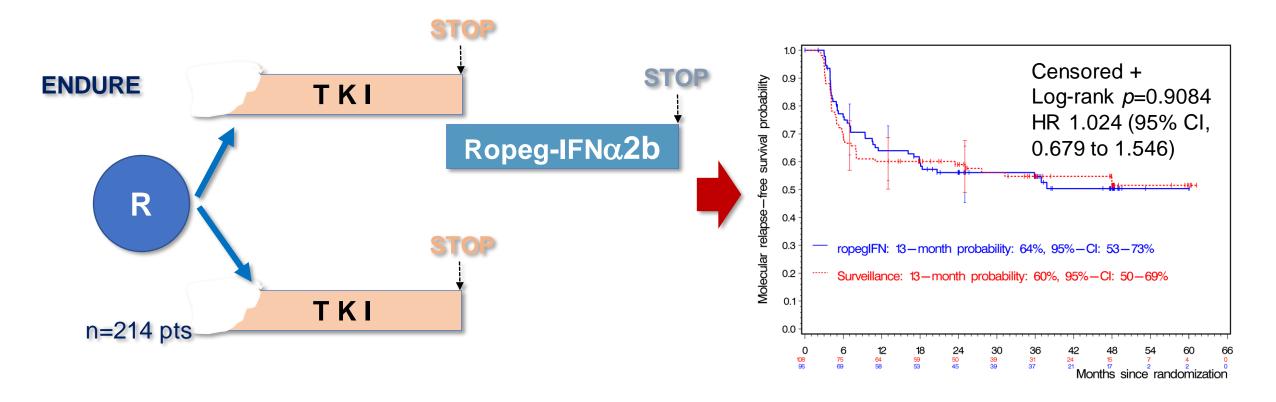
Gray zone represents 95% confidence interval

Nicolini FE, Fava C et al.. Ei CML 2024 & in preparation

How can we increase the access to TFR (5)?

Combine 2G-TKI (Nilotinib) with interferon ?

Nicolini FE et al., Submitted Hochhaus A et al. EHA 2023

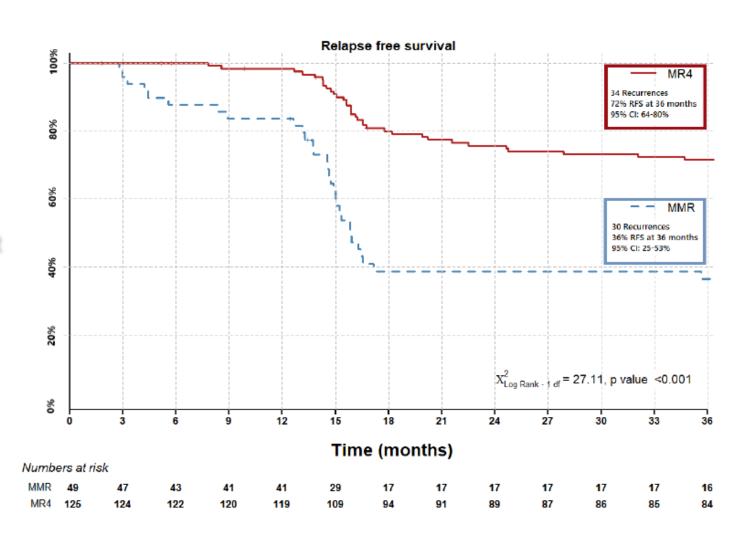


n=313 pts

How can we increase the access to TFR (6)?

Combination of TKI followed by interferon ?

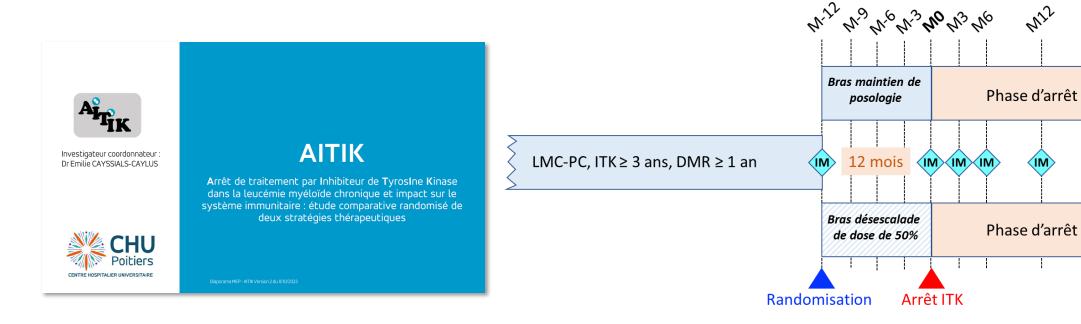
Burchert A et al.. Submitted


How can we increase the access to TFR (7)?

 Decrease TKI by half 12 months prior to cessation ?

Destiny trial in UK

n=141 pts in stable MMR but not in MR4 at enrollment


n= 125 pts in MR4 at enrollment

Clark RE et al.. Lancet Haematol 2019

How can we increase the access to TFR (8)?

Decrease TKI by half 12 months prior to cessation ?

Evaluation de la qualité de vie : M-12, M-6, M0, M3 et M6 **Evaluation de la concentration résiduelle de l'ITK** : M-12 et M0

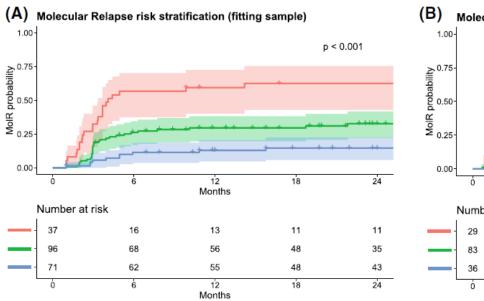
Immunomonitoring

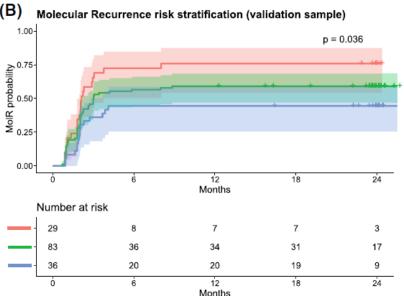
Signature sanguine LT CD8 innés prédictive d'un succès d'arrêt

Proportion de patients en TFR

à M24 post arrêt

Cayssials E et al.. Submitted ASH 2025

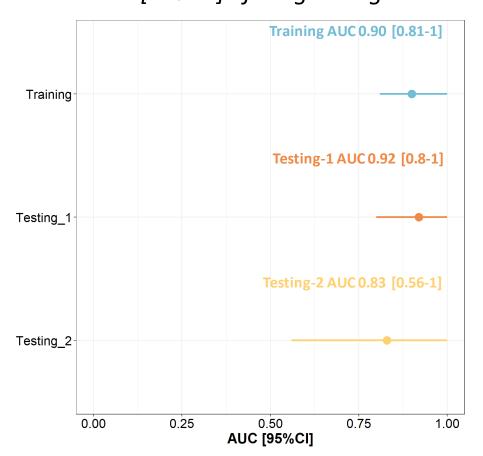

New tools to better select patients (1)?


Digital droplet PCR at cessation ?
 Meta-analysis MolR prediction with BCR::ABL1 ddPCR

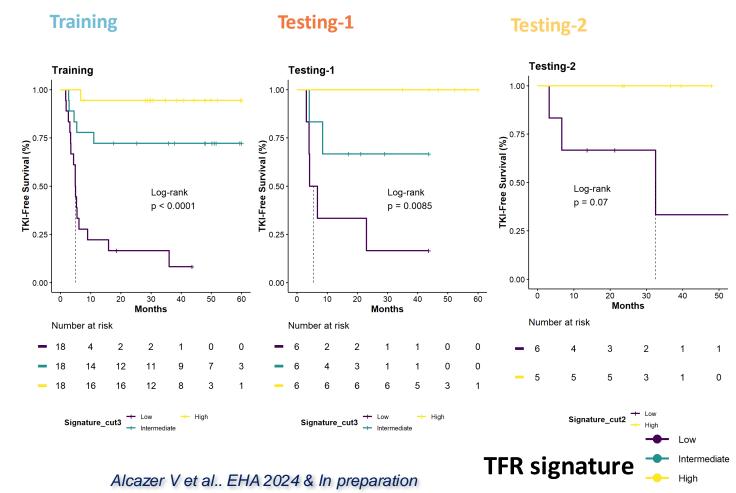
Molecular recurrence risk stratification model

Risk parameters dPCR-high Treatment duration <6 years	HR [95%CI] 2.327 [1.548-3.497] 1.278 [0.921-1.771]	Points +2 +1	Score 3-4 1-2	High
E13a2 transcript	1.480 [1.037-2.113]	+1	0	Low

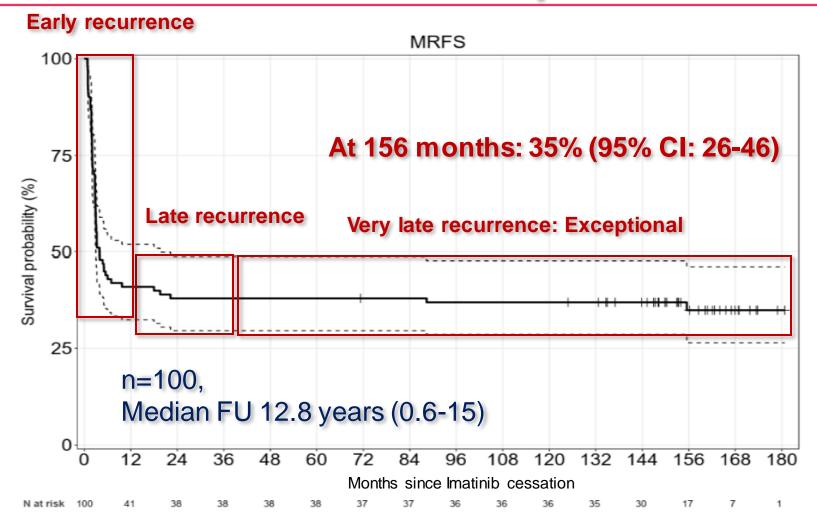
Depth of molecular response measured by *BCR::ABL1* ddPCR is a valuable and robust predictive parameter for successful TKI discontinuation



Cockerols C et al., AJH 2024

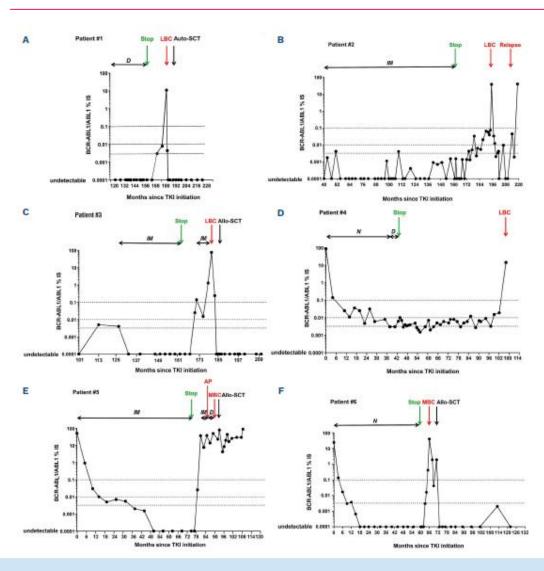

New tools to better select patients (2): RNASeq at cessation?

Binary outcome (TFR at 2 years: Yes vs No) AUC [95%CI] of 27-gene signature



Time-dependent outcome (TFR along time)

27-gene signature cut at terciles / median value

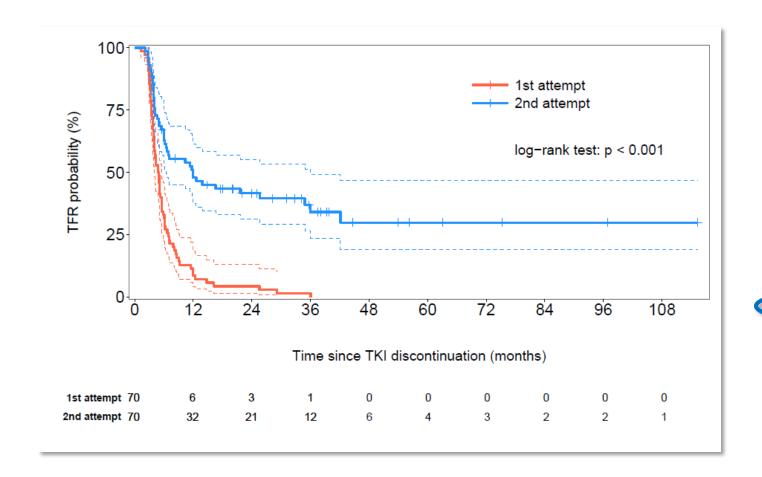

What are the very long term results of TFR? 2025 STIM 1 update

Mahon F-X. et al. Blood Neoplasia 2025 In press

TFR = No blast crises?

LETTER TO THE EDITOR

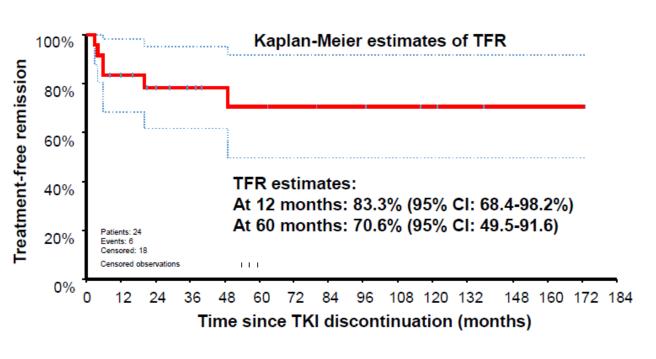
Onset of blast crisis in chronic myeloid leukemia patients in treatment-free remission

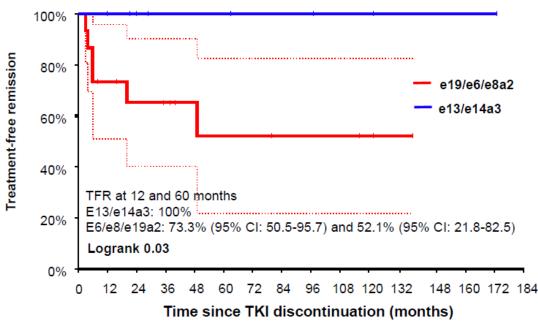

- 6 cases of BC (4 LBC, 2 MBC) during TFR procedure
- Rare event probably close to ~0.005%
- All pts had mutations or CNV in myeloid genes by NGS
- Recurrent EP300 (2 pts, 1 LBC, 1 MBC) and SETD2 genes (2 LBC)] mutations/deletions.

Dulucq S. et al. Haematologica 2022

Are second TFR attempts possible?

2nd attempt


65.19% [95% CI 54.85-77.46] at 6 months 48.69% [95% CI 38.13-62.18] at 12 months 40.61% [95% CI 30.32-54.39] at 24 months



Legros L. et al. Cancer 2018

Are TFR attempts possible for rare BCR::ABL1 transcripts?

n=24 pts, e13/e14a3 in 37.5%, e19a2 in 37.5%, e6/e8a2 in 25% of pts on Imatinib.

Johnson-Ansah H. et al. Leuk Res 2025 In press & SOHO 2025

Early relapses were sudden: 4 CHR loss including 1 acceleration. All were rescued.

General conclusions

- TFR attempts have entered now routine practice
- The longer time on TKI, the better
- Acurate and prolonged molecular follow-up is required
- Multiple efforts are ongoing in order to improve TFR success
- Better selection of patients should be done
- Clinical and biological factors of success have been described
- TFR is possible in patients with atypical BCR::ABL1 transcripts
- Be aware that BC can occur in exceptional cases

Acknowledgements

CML patients

Pr F. Castagnetti

Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna

Mr D. Bartozzi ER Congressi

